
Building an Efficient Poker Agent Using RL

Alex Kashi
Harvard

alexkashi@g.harvard.edu

Vedang Lad
MIT

vedlad@mit.edu

Håkon Grini
Harvard

hgrini@g.harvard.edu

Abstract

Poker is one of the most widely played card games worldwide, particularly due
to its unique blend of skill and luck. The psychology of a successful poker player,
how a player demonstrates confidence through bets and bluffs combined with
imperfect information makes poker very “human”. Our group aims to create a
deep reinforcement learning agent that is capable of outperforming existing poker
bots to demonstrate RL’s ability to “solve” non-deterministic problems. We plan
to build on the existing framework Neuron_poker1. This framework provides an
OpenAI gym-style environment for training and evaluating Poker agents. It also
allows easy creation and integration of new poker "players", which we create in
this project. Using this framework, we create a novel PPO and modified DQN
agent that outperforms the existing agents that Neuron Poker has to offer. We also
experiment with other variations of DQN, such as dueling DQN and Double DQN
to enhance performance. We present a deep reinforcement learning alternative to
playing poker, one that does not rely on probability tables or continuous outcome
trees, purely on Reinforcement Learning.

1 Introduction

We create deep reinforcement learning poker agents based off of the state of the art algorithms
that can run in real-time, without explicit calculation of probabilistic trees. Our algorithm intends
to outperform tree-based methods, as well as poker enthusiasts by building intelligence through
"self-play". To gauge the performance of our agents we use the return of the agent across multiple
rounds of Texas Hold’em. Following this metric, we can have different agents playing against one
another to show that our model is capable of outperforming opponents. We introduce some poker
variations, such as Limit Texas Hold’em and various assumptions in order to realistically solve the
problem with the resources available.

2 Related work

Poker has long been a hot research topic for the field of artificial intelligence, as it is a popular example
of a game dealing with imperfect information, which makes decision-making more complicated and
challenging. In this section we outline some previous works in the field of computational poker,
specifically into Heads-Up Texas Hold’em, with an emphasis on efforts using Deep Q-Learning and
Policy Gradient Methods, as these are most closely related to our experiments. We also review some
of the defining literature on the methods used.

1https://github.com/dickreuter/neuron_poker

Preprint. Under review.

https://github.com/dickreuter/neuron_poker


2.1 Deep Q-Learning

Reinforcement learning using Deep Q-Networks (DQN) was popularized by Mnih et al., who were
able to teach an agent to play Atari games by training it to predict the best actions based on the
previous sequence of observations and actions [MKS+13]. As the observations are represented by
the pixels, the authors used a neural network to learn high level features of the observations, thereby
reducing the dimensionality of each observation. With this approach they were able to teach the agent
to play 7 different Atari games, surpassing a human expert in 3 of them, without any prior knowledge
using only the reward from the end state to guide the training. One of their main innovations was
to utilize a replay memory to store the agents experience to be able to continue learning from them
when training. Sampling from this buffer randomly allows the agent to be exposed to less correlated
datapoints.

Several variations of DQN have been introduced in the last few years. An example is Double DQN,
first introduced by van Hasselt et al.. The original DQN approach is based on training using a target
network consisting of a previous iteration of the network parameters, to estimate the value of the next
state after an action as seen in the following equation.

Y DQN
t = Rt+1 + γmax

a
Q(St+1, a; θ

−
t ) (1)

Here Y DQN
t represents the target value, Rt+1 represents the reward from taking the action, and

γmaxa Q(St+1, a; θ
−
t ) represents the discounted value of taking the action of the highest value in

the next state St+1 with respect to the old network weights θ−t . The use of the old weights is meant
to separate the target from the network itself to avoid using a moving target which changes with
the weights. Using the max operator to find the value of the next state does, however, tend to lead
to overestimations when valuing the future states, as an overestimated action is likely to be picked,
which could lead to a suboptimal policy. To avoid this issue the idea of Double DQN is to have two
sets of weights where one set of weights is used to select the best action whereas the other set of
weights is used to evaluate that action, according to the following equation.

Y DQN
t = Rt+1 + γQ(St+1,a Q(St+1, a; θ), θ

−
t ) (2)

To avoid having to train several networks the authors suggest using the online weights to select
the best action for the next state but using the target network consisting of an older iteration of the
weights to evaluate the action. This approach helps reduce overestimation as it is less likely that an
action that would be overvalued by the target network is chosen based on the online network than if it
had been greedily chosen by the target network.

Due to poker’s large state space and high dimensionality, there have been a substantial amount of
effort directed into using Deep learning in combination with reinforcement learning for the game.
One of the more notable ones is the DeepStack algorithm introduced by Moravčík et al., which trains
a model by playing itself, using search to look ahead to see potential outcomes of moves and evaluate
those states using the trained DQN. Deepstack uses various heuristics to decrease the search space,
and manages to defeat professional poker players with a statistical significance in heads-up no-limit
Texas Hold’em.

A more recent example of a DQN based approach to poker is the Recursive Belief-based Learning
(ReBeL) [BBLG20a] algorithm introduced by Brown et al.which provably converges to a Nash
equlibrium in all two-player zero sum games, which includes heads-up no-limit Texas Hold’em
[BBLG20a]. This algorithm also combines reinforcement learning with search to evaluate the states
different actions would lead to, which is similar to the approach taken in state of the art algorithms for
deterministic games such as AlphaZero [SHS+17]. To account for the fact that the next observation
cannot deterministically be determined by the current observation and action it incorporates the
probabilistic belief distribution of the agents on what state they are in depending on the information
they are given.

The Nash equilibrium is defined as the policy profile where no agent can achieve a higher expected
value by switching to a different policy, and have been proven to exist for all finite games. The
benefit of the Nash equlibrium is that if the player sticks to this policy it is guaranteed to not loose in
expectation, independently of what the opponents strategy is.

2



2.2 Policy Gradient Methods

There have been previous efforts into using policy gradient methods for zero-sum imperfect infor-
mation games, and Texas Hold’em specifically. An example of this can be found in the paper by
Srinivasan et al.which demonstrates that a model-free agent that uses gradient-ascent to functions
that approximates the discounted return of decisions, can generate policies that approximate the Nash
equilibrium [SLZ+18]. In their approach they maximize the advantage from doing an action in a
state compared to the mean return among all available actions, weighted by their likelyhood under the
policy. This mean return is used to evaluate the state, which makes the approach a Mean Actor-Critic
based one.

A recent innovation within the Policy Gradient field is the Proximate Policy Opimization (PPO)
family of methods, first introduced by Schulman et al.[SWD+17]. This approach is intended to be
scalable, data efficient and robust and is proposed as an alternative to other policy gradient methods
and DQN. Their main novelty is that they propose a novel objective which uses clipped probability
ratios, to form a lower bound of the policy performance. This also builds on the idea of Trust Region
Policy Optimization (TRPO) introduced by Schulman et al., which maximizes the expected advantage
subject to a constraint stating that the weighted Kullback-Liebler divergence between the old and
updated policy must be below a certain threshold [SLM+15]. This constraint is intended to ensure
that policies don’t change too much between updates, but makes the algorithm more complicated
and harder to compute. To circumvent this issue, and also avoid adding a penalty term for the KL
divergence to the optimized function, the authors instead proposes to set a bound on the ratio between
the old ratio and the new one for every optimization step, ensuring that the gradient is also capped
when making a step in its direction. This method requires the setting of a hyperparameter to decide
how big the relative change between policies can be before clipping.

2.3 Other State Of The Art Poker Algorithms

For games with three or more players, the concept of a Nash equlibrium becomes more complicated
than for the two player version discussed so far, as even if the players independently computes a
Nash equilibrium the resulting list of strategies may not necessarily be a Nash equlibrium. This gives
players incentive to deviate from their computed strategy. For this reason, the Pluribus algorithm
introduced by Brown et al.does not guarantee convergence to a Nash equilibrium when playing
against multiple opponents, but still manages to consistently defeat elite human players in six-player,
no-limit Texas Hold’em, and was the first algorithm to do so.

Similarly to ReBeL [BBLG20a], the Pluribus algorithm is trained by playing against itself and
gradually improving, by searching for better strategies in real time. To shrink the large state and
action space it buckets different decision points together, and also removes some possible actions.
This significantly different from ReBel [BBLG20a] which does not abstract the game at all, making
it more applicable to other games than just poker. Another major difference is that Pluribus does not
use deep learning but relies solely on reinforcement learning.

The current state of the art algorithm along with ReBel [BBLG20a] comes from Deepmind’s "Player
of Games" [SMB+21]. It uses uses growing-tree counterfactual regret minimization to recursively
explore sub trees, and update parameters accordingly. The algorithm combines self-play, guided
search, and game-theoretic reasoning in order to take on many games of imperfect information well.
While it employs a different method as to Facebook’s ReBeL and methods taken in the paper, POG
tackles the problem of imperfect information with an ensemble of methods.

3 Problem Formulation

3.1 State Space

One of the inherent challenges of poker is the large state space, as there are a very large number
of configurations. The state-space naturally also depends on the number of players at the table, as
several components of the state are specific to each state. Examples of this are the amount of money
each player has left, the position each player has in the turn, and the history of player actions. This is
effectively determining how aggressive each player is, just a few techniques that poker players employ.
Furthermore, one would need to keep track of the shared information about the table, such as the size

3



of the pot, which players have folded, how much has been raised, and naturally the community cards.
All of this, along with the cards that are in the current player’s hand, would be part of the state.

Naturally, all these variables lead to a very large state space which makes it impossible to explore all
feasible states. This motivates the possible use of a model-based state evaluator. This model would
survey the current state of the game and result in a state evaluation, which would eventually be used
as an input into the larger network (DQN/PPO). This is similar to the approach taken by DeepMind
in their work when solving chess. A limitation of this method is extensive(and expensive) computing
time, which we may not currently have access to.

For the time being, we propose limiting the state space to the following three categories and their
respective states. While a model-based evaluator would be able to capture "hidden features" of poker
more effectively, we only use the following states to train our model. We use "hidden features"
here as a description of other subtleties of poker, for instance, a model-based evaluator may be to
recognize when a player is bluffing more accurately than if there was just a normal state input.

State
Community State Stage State Player State
Current position Raises Position
Stage Min Call at Action Equity to river alive
Community pot Contribution Equity to river 2plr
Current round pot Stack at action Equity to river 3plr
Active players Pot at action Stack
Big blind Calls
Small blind
Legal moves

It is important to note that while the state is very large, many of the state variables only have finite
values i.e the current position, the value of the blind, etc. We use one hot encoding where appropriate
which helps overall convergence of the algorithm.

3.2 Action Space

The action space for poker is also very large, as one can not only fold, call and check but also raise by
an arbitrary amount. To simplify this large action space, a common approach is to only allow agents
to raise by discrete amounts. In our case, the amount an agent can raise is defined by the amount of
money in the pot. It is possible to go all-in when the amount of cash on hand is limiting one’s ability
to raise these discrete amounts.

For efficient training and reducing the size of the action space, we limit the raised actions to the
following. This way one can characterize the “boldness/intensity" of a given move better. A future
work here would be to perhaps use a regression between the 5 different raises to characterize the
“intensity" of a raise in continuous action space.

Actions
Blind Actions Raise Actions Card Actions
Big Blind Raise 3x Big Blind Fold
Small Blind Raise Half Pot Check

Raise Pot Call
Raise 2x Pot
All In

The raise actions are ordered in the terms of the “intensity" of the move. 3x Raise of the big blind is a
conventional raise while going "All In" is a move that exudes confidence (whether real or bluffed).

3.3 Objective Function

Poker as a game has an inherent benefit when it comes to objective functions, as one will get a clear
indication of how good one’s policy was at the end of each round by seeing how much money one
lost or won that individual round. This allows for a dense reward function which makes evaluating
states and actions simpler. The reward function will likely need some experimentation to find the one

4



that works best in practice. As an alternative to simply using the money lost or won as a reward, one
could scale each reward by subtracting the average reward over all possible actions for the given state.

3.4 Base Learning Algorithm

We will be investigating the effectiveness of two DQN and PPO in learning Poker, the architecture of
each agent is as follows.

DQN is implemented using keras-rl2. The network contains 4 dense layers with relu activations, with
a final linear layer. It is trained locally before play with the ability to control the duration of the game
(Limit Texas Hold’em), with the opportunity to find the optimal batch size. We explore other DQN
structures such as dueling DQN and Double DQN to measuring performance.

The second implementation utilizes a three layer PPO followed by the Tanh layer. This is implemented
using the pytorch framework, as keras-rl currently does not have a PPO implementation. We train
both PPO and DQN against the random agent and the equity agent, which we describe below.

3.5 What simulator are you using

For our experiments, we are using the Neuron Poker RL environment, which extends upon OpenAI’s
gym package allowing users to test and compare agents against each other in Texas Hold’em. This
package includes a few pre-made agents such as a random agent and a Deep Q-learning agent made
with a relatively shallow, dense network.

The Neuron Poker environment also has built-in functionality to test agents against real humans,
which could be interesting to experiment with, to investigate how a trained agent performs against
players with different styles such as players with different risk aversion.

3.6 Success criterion

There is a simple success criterion from game to game, which is simplified by the rules of poker.
Whoever walks away with the pot has won the game as they have taken the chips of other players.
Therefore, the rewards of all players in a game should realistically decay to zero and the winner will
be the only one to make a profit.

The success criterion of our specific model is to outperform existing models that exist in Neuron
poker. This is accomplished by running two agents against one another and seeing who has won after
a finite number of iterations (or until someone has won).

Figure 3: We visualize the Nearon Poker framework by the Poker table seen above. While here we
play Heads Up Texas Hold’em with two random agent, we can pick any of the trained agents to play -
even through manual keyboard inputs.

4 Results

4.1 Baselines

To get a sense of the performance of the trained models we compare the models to two separate
baselines, which will be referred to as the random and the equity agents respectively.

5



4.1.1 The random agent

The random agent is an agent which takes no information about the current state into account,
and makes a random choice among the legal moves. We consider this as the lower bound for the
performance of a trained agent, because if not the agent would make worse decisions by taking state
information into account. However, during the early training steps it makes sense that performance
becomes worse than the random agent as being overoptimistic or overpessimistic is likely to lead to
poor strategies.

4.1.2 The equity agent

In addition to the random agent we compare the models against an agent that bases its decisions on
the approximated equity, which represents the likelyhood that the agent will win based on the cards
on its hand and the shared cards on the table. In the framework this equity is estimated by performing
500 Monte Carlo simulations for which every simulations hands random cards to every other player
and to the reimaining slots on the table, and then checks to see if the agent would win. The equity is
then the agents win ratio over these simulations.

The action taken by the player is then determined by hyperparameters that sets a minimum equity for
every action to be taken. The equity needed for the agent to go all in is naturally the highest, while
the equity required to call is the lowest.

Although this agent is better than the random agent it has a set of shortcomings. One problem is
that it becomes sensitive to the choice of hyperparameters, which dictates the policy. It is also an
issue that the actions taken by the agent reveals a lot of information about the players hand which
can be easily exploited. For instance, if the agent needs a 50% chance of winning to raise, but only a
30% chance of winning to call, then the action of calling indicates to the opponent that the player is
not very confident in its chances of winning. The equity agent is also unable to take the opponents
actions into account which naturally is crucial as these actions reveal something about the opponents
confidence in its cards.

The equity agent therefore does not produce a policy according to a Nash Equlibrium, and should be
possible for a properly trained agent to beat, but it does represent a policy that is substantially more
hard to beat than that of the random agent.

4.2 Training

We train all methods PPO and DQN and its variations on both the random and equity agent which
serve as a baseline. The intelligent baseline being equity agent while the unintelligent baseline is the
random agent, however explores the space to a greater extent than the equity agent. Figure 1 below
illustrates the training for all of the agent, the first column being the equity agent and the second
column being the random agent. We see the advantages of the random agent in training, as it is able
to explore more of the space and attain a higher reward than the intelligent equity agent. Since the
equity agent is more intelligent, we see that the model has a smaller reward than the random agent.

We also notice that regardless of the variation of DQN, as seen in the bottom right, all methods
are within variance of one another. This reveals a shortcoming not of the type of algorithm, but a
limitation of DQN itself. We also find that, as expected, longer iterations lead to higher episode
rewards as limited by our computation abilities.

6



Figure 1: Top left: We have a PPO agent trained against an equity agent, an agent that acts more
intelligently than the random agent, as seen by the Top Right. As seen over multiple runs, the random
agent achieves a higher reward than the more intelligent equity agent as it is able to explore the
large state and action space more rigorously. This is further confirmed in inter-play plots depicted
in the following section. On average, we find that even the DQN trained against the Random agent
(Bottom Right) achieves a higher reward for similar reasons. Regardless of the variation of DQN, all
algorithms achieve similar performance which suggests limitations inherent to DQN.

4.3 Testing

We test trained agents in the most reasonable way possible: we allow inter-agent play. In particular,
we take the best DQN agent and the Best PPO agent to play Heads Up Texas Hold’em. Here the best
agent is determined through inter-agent play, also illustrated by the episode reward. More specifically,
we play a total of 100 poker games, in which the PPO agent beats the Double DQN agent, around
60-40, as seen in the plot below. In order to ensure that the “best model" truly has learned, we play
another 100 games against the random agent, where the PPO agent wins handedly, around 80-20.

Figure 2: As played over 100 games, we see that the best PPO agent outperforms the best DQN
agent, the double DQN. As a baseline comparison, we see that the PPO wins hand idly over the
random agent, but not as well over the Equity Agent. While this is certainly not the state of the art, it
represents a computationally limited model with a small network that is able of learning a policy to
play poker well.

7



5 Unexpected Issues that Stymied Progress

When working on this project we ran into several issues. We struggled quite a bit with the framework,
in particular when it came to the training of a PPO agent. The reason for this is that the Neuron Poker
framework uses Keras-RL, which currently does not support PPO. We tried to make adjustments
to the Keras-RL code to make it work, this was unfortunately to no avail. In the end we decided to
try integrating another RL framework called EasyRL to train the agent with PPO. This required a
substantial amount of tweaking before we were finally able to get it to train.

Another issue with the Keras-RL framework that it is not easily compatible with Apples newest
ARM-based chips, which was a problem when the computers of two of the teams members had this
type of chip. We tried to solve this issue by moving the training of the models to Google Colab, but
as training requires a substantial amount of time, Colab was not a feasible solution as the sessions
would expire before the agents had achieved reasonable performance. The long training time was
also problematic in general, as it limited the quality of the resulting agents.

6 Conclusion/Discussion

One of our main takeaways from this project is that the PPO algorithm was able to learn poker
strategies to the extent that it was able to consistently beat the random agent, and outperform the
relatively intelligent baseline of the Equity agent. It also outperformed the best of the trained DQN
agents, namely the Double DQN agent. This shows the PPO algorithm’s potential for an imperfect
information game like poker. However, further experimentation would be needed to thoroughly assess
its capabilities against more advanced agents.

An alternative could be to apply the self-training concepts seen with AlphaZero, ReBeL and Deepstack
to the PPO algorithm, using older instantiations. Such an agent could help find a balance between
the randomness of the random agent and the calculated approach of the equity agent and instead
behave more like human players by estimating the most likely outcomes, but with a certain degree of
unpredictably. This would further help capture the nuances of the game, as neither of the agents it
was trained against take in the entire state when making their moves. So the opponents behavior is
simply ignored.

The potential seen in this proof of concept is clear, however, and it gives a strong case that PPO is a
suitable alternative to DQN for imperfect information games such as poker. Our DQN algorithms
clearly struggled with training, and often ended in loops of illegal moves. We find that while DQN
may not be the obvious solution, PPO offers a promising direction forward for imperfect information
games.

7 Contributions

7.1 Alex Kashi

Alex took responsibility for making the PPO agent train properly which was no small feat considering
all the struggles with using Keras-RL before transitioning to Easy-RL. He also did most of the training
of the models once we had them up and running.

7.2 Vedang Lad

When it became clear that Apple’s silicon was not going to work with the selected frameworks and
environments, Vedang took the main responsibility for transitioning the training to the cloud, allowing
all team members to train and experiment with DQN agents. Furthermore, he helped visualize the
results of the trained agents and contributed a substantial part to the mid- and final report.

7.3 Håkon Grini

In addtion to training and experimenting with DQN agents, as well as the training environments.
Håkon did most of the research into previous approaches and similar works. He also wrote a large
portion of both reports.

8



References
[BBLG20a] Noam Brown, Anton Bakhtin, Adam Lerer, and Qucheng Gong. Combining deep

reinforcement learning and search for imperfect-information games, 2020.

[BBLG20b] Noam Brown, Anton Bakhtin, Adam Lerer, and Qucheng Gong. Combining deep rein-
forcement learning and search for imperfect-information games. CoRR, abs/2007.13544,
2020.

[BS18] Noam Brown and Tuomas Sandholm. Superhuman ai for heads-up no-limit poker:
Libratus beats top professionals. Science, 359(6374):418–424, 2018.

[BS19] Noam Brown and Tuomas Sandholm. Superhuman ai for multiplayer poker. Science,
365(6456):885–890, 2019.

[BSA18] Noam Brown, Tuomas Sandholm, and Brandon Amos. Depth-limited solving for
imperfect-information games. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018.

[MKS+13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning,
2013.

[MSB+17a] Matej Moravč ík, Martin Schmid, Neil Burch, Viliam Lisý, Dustin Morrill, Nolan Bard,
Trevor Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. DeepStack:
Expert-level artificial intelligence in heads-up no-limit poker. Science, 356(6337):508–
513, may 2017.

[MSB+17b] Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisý, Dustin Morrill, Nolan Bard,
Trevor Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack:
Expert-level artificial intelligence in heads-up no-limit poker. Science, 356(6337):508–
513, 2017.

[Reu19] Dick Reuter. Neuron poker. https://github.com/dickreuter/neuron_poker,
2019.

[SHS+17] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,
Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy
Lillicrap, Karen Simonyan, and Demis Hassabis. Mastering chess and shogi by self-play
with a general reinforcement learning algorithm, 2017.

[SLM+15] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel.
Trust region policy optimization, 2015.

[SLZ+18] Sriram Srinivasan, Marc Lanctot, Vinicius Zambaldi, Julien Perolat, Karl Tuyls, Remi
Munos, and Michael Bowling. Actor-critic policy optimization in partially observable
multiagent environments, 2018.

[SMB+21] Martin Schmid, Matej Moravcik, Neil Burch, Rudolf Kadlec, Josh Davidson, Kevin
Waugh, Nolan Bard, Finbarr Timbers, Marc Lanctot, Zach Holland, Elnaz Davoodi,
Alden Christianson, and Michael Bowling. Player of games, 2021.

[Ste19] Eric Steinberger. Pokerrl. https://github.com/TinkeringCode/PokerRL, 2019.

[SWD+17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms, 2017.

[vHGS15] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with
double q-learning, 2015.

9

https://github.com/dickreuter/neuron_poker
https://github.com/TinkeringCode/PokerRL

	Introduction
	Related work
	Deep Q-Learning
	Policy Gradient Methods
	Other State Of The Art Poker Algorithms

	Problem Formulation
	State Space
	Action Space
	Objective Function
	Base Learning Algorithm
	What simulator are you using
	Success criterion

	Results
	Baselines
	The random agent
	The equity agent

	Training
	Testing

	Unexpected Issues that Stymied Progress 
	Conclusion/Discussion
	Contributions
	Alex Kashi
	Vedang Lad
	Håkon Grini


