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Abstract

With the growing popularity of the Visual Question and
Answering (VQA) dataset along with the introduction of
various state of the art image and language models, we
hope to push the accuracy of the VQA dataset by combining
existing image and text encoders, to create a novel model
using a method never implemented before. The model is
tested on the existing VQA dataset V2 1. Limited by com-
puting power, we combine pre-trained frameworks and fine-
tune existing image and text encoders to better optimize
them for the VQA dataset. While there was no VQA Chal-
lenge this year, we achieved competitive results on the “Ab-
stract Scene” image set using a novel framework. We test
variations of ResNet, LSTM, and GRU architectures and
then create a novel Modified Bidirectional RNN.

After rigorous testing which we present in the paper, we
propose a new framework which we call GRUNet. GRUNet
is a novel Bi-Directional RNN architecture that combines
GRU + RNN + ResNet to effectively combine text and im-
age input to answer VQA questions. This architecture rep-
resents a popular style of fusion of vision-language models
that are known to be effective at VQA.

1. Introduction
1.1. Motivations

Understanding a scene, or the problem of scene segmen-
tation is essential in nearly all forms of Computer Vision
(CV). Similarly, parsing text input from humans or other
computers is another cornerstone of Natural Language Pro-
cessing (NLP). Both represent the forefront of research,
seen by the various popular models that handle both im-
age and text as inputs such as CLIP [3]. The principles of
VQA are based on the fact that in the presence of multi-
modal knowledge input, here through CV and NLP, an in-
telligent model can answer correctly regardless of noise or
complexity - the way a human would. A task that is simple

1(https://visualqa.org)

Figure 1. An examples of an abstract scene from [1] which we
train and test on in the paper

for humans but not for computers, the success of the VQA
dataset represents a step forward towards a compelling ”AI-
complete” task. An AI-complete task, as discussed in the
introduction of the first VQA dataset [1], represents just
one piece in the quest for artificial intelligence. Other re-
lated tasks include but are not limited to Video Question
and Answering, image captioning, and image generation.
As pictured in 1, we have an example of an abstract scene
with a question, which we tackle in this paper.

We choose to create a model that answers open-ended
questions as opposed to multiple-choice questions. This
represents a more AI-complete task, as there is no answer
suggestion. Accuracy is determined simply by

Acc(ans) = min(
humans that said ans

3
, 1)

An exciting application of VQA datasets is building models
that can serve as visual aids for the blind. The idea is that
a robust model can be pointed at new scenes and answer
questions about the scene or subject to a level of accuracy
to that of a human.

Since we choose to investigate abstract scenes, we have
access to 200,000 questions and just 50,000 images for both
testing and training - far less than that of real images. While
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abstract scenes are “simpler” than real images in the sense
that they do not contain adversarial noise or detractors, deal-
ing with far less training and testing data requires models to
train efficiently. This is a task that we specifically test be-
fore making GRUNet.

In this paper, we test a variety of architectures to de-
termine which performs most optimally on VQA v2 test-
ing datasets. We build on the existing network presented
by [1], by modifying the image encoder from VGG18 to
various ResNets. We also modify the text encoders using
Gated Recurrent Unit (GRU) and Long Short Term Mem-
ory (LSTM). We combine the principles of a fusion mode
from [6] and our best image and text encoders to create
GRUNet. All tested models can outperform the [1] base-
line which achieves only a 0.55 average score on testing
sets. Our main contribution in this work is suggesting a
network architecture that has not been used before. Using
transformer architectures, as discussed in [6] and [5] has
historically not performed highly on VQA data sets follow-
ing rigorous hyperparameter tuning, which was therefore
avoided. We focus here on various RNN structures and pro-
pose a new solution.

2. Related Work
2.1. Dataset and Baseline

Aishwarya et al [1] collected the VQA dataset and cre-
ated baseline architectures that achieve reasonable perfor-
mance. In the abstract dataset, they create 50,000 abstract
scenes, split into 20K train, 10K validation, and 20K test. A
scene consists of a question, an image, and an answer or a
set of answers. For the Open-Ended task, a model must pro-
duce an answer, and that answer is considered correct if it
appears in the set of correct answers. Humans, when given
a question and image, can produce the correct answer 83%
of the time for real images and 87% for abstract images.
The current state-of-the-art models, as discussed below, do
not achieve that accuracy, showing that there is room for
improvement in VQA models.

The baseline architecture created [1] uses a text encoder
and an image encoder multiplies the corresponding features
and then uses a fully connected layer to decode into words
from the vocabulary. The text encoder uses an LSTM with
input word2vec embeddings, and the image encoder uses a
convolutional layer fed into VGG-18. Their model achieves
57% accuracy on real images and 55% accuracy on abstract
images.

2.2. Joint Image and Text Encodings

Successful follow-up work on VQA has used joint en-
codings of images and text instead of encoding separately.
CLIP [3], a joint language-image transformer, was pre-
trained to maximize the cosine similarity between image

Figure 2. VLMo architecture [6]

and text embeddings. When fine-tuned on VQA, the CLIP-
ViL model [5] achieved 76% accuracy on real images.

VLMo [6] provides another transformer architecture for
VQA that uses joint image and text encodings to improve
learning. They have three modality expert feedforward neu-
ral networks: a vision expert, a language expert, and a
vision-language expert. Their architecture is shown in Fig-
ure 2, and they pre-train on image-text contrast, image-text
matching, and masked language modeling. While we don’t
use a transformer model, we take direct inspiration from
their architecture, especially their image-text matching ar-
chitecture (See Figure 3). VLMo achieves a similar accu-
racy to CLIP on real images, at 76%, rounding out the state
of the art accuracy.

As discussed by [6], dual image and text encoders often-
times do not work as well for VQA. As seen by [5], RNN
architectures that can sequentially parse a large input work
best for text encoders. In a similar vein, image encoders like
ResNet and BGG trained on millions of images are hard to
compete against.

2.3. Bidirectional Recurrent Neural Networks

Recurrent Neural Networks (RNNs) and their variants
are effective at normal question answering tasks. They do so
effectively because they maintain the memory of the ques-
tion with a sequential encoding of the inputs and passing
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Figure 3. VLMO pretraining for the image-text matching. We
base GRUNet on this framework with recurrent memory units on
feeding into and out of an encoder

Figure 4. A traditional bidirectional RNN architecture. x is the
input sequence, a is an optional input encoding, and y is the output.

that sequential encoding, along with the next input, into the
next unit of the network (See Figure 4 for a diagram). A
Gated Recurrent Unit (GRU) is set up essentially the same
way as an RNN, just with an additional forget gate where
it can learn when to forget information. Long Short Term
Memory (LSTM) adds a learn gate, a remember gate, and a
used gate on top of the forget gate.

Bidirectional RNNs, LSTMs, and GRUs significantly
outperform bag of words and deep-question answering
baselines in factoid question answering [7]. Bidirectional
RNNs learn more about the sentence structure than a unidi-
rectional RNN because words at the end of a sentence can
affect the meaning of words at the beginning – the meaning
of a sentence flows bidirectionally. We incorporate Bidi-
rectional RNNs, LSTMs, and GRUs for the GRUNet Ar-
chitecture because they still perform well on question an-
swering without requiring the same pre-training of atten-
tion/transformer architectures.

3. Approach

3.1. Text Encoder

We start with the existing architecture which achieves
55% percent accuracy. Our first step is to optimize the ex-
isting method and fine-tune it. This is achieved with the
addition of linear layers that connect the image and text en-
coders. We call this ”baseline-finetune”. This existing ar-
chitecture utilizes LSTM which we then replace with GRU.
An LSTM’s ability to keep track of long sequences makes
them an ideal candidate for text encoders, which in this
case questions to be answered. The idea was to keep the
principles of an LSTM but to see if the introduction of the
forget-gate in a GRU can help to learn on the VQA dataset.
Furthermore, GRU’s requirement of fewer parameters was
hypothesized that it will allow for faster training and learn-
ing. This was essential in training and testing since these
are large datasets that can not be run locally but need to be
tested on all test images to have a meaningful metric. The
results of these investigations can be seen in 4.

3.2. Image Encoder

We experiment and fine-tune the VGG framework and
ResNet frameworks. We utilized pre-trained models, which
are trained on ImageNet. Here we investigated how the
number of layers in architecture, specifically in ResNet af-
fected the image detection in the abstract scenes. While
larger ResNets are computationally heavier, we wished to
see which architectures would be optimal for GRUNet.
These results are more rigorously presented in 4/

3.3. GRUNet Architecture

GRUNet is another architecture that attempts to join the
text and image encodings to improve VQA output and com-
bines that idea with the successful memory of bidirectional
RNNs. The main idea of GRUNet is that we want each
word of the sentence to be paired with an encoding of the
image specifically based on that word, and then we encode
the joint encodings temporally. This way we have some
memory over the entire sentence’s image + text encodings.

Figure 5 diagrams the GRUNet Architecture. Specifi-
cally, our model first creates a word2vec [2] embedding of
the sentence and then feeds those embeddings into a GRU.
At each timestep, the GRU outputs an encoding, which we
feed into an encoder that uses ResNet on the input image
and combines with the text encoding via a fully connected
layer. We feed the output of the mid-layer encoder into an-
other GRU for each word. The output of our final GRU
layer passes through a fully connected decoder layer to pro-
duce answers in the vocabulary space.
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Figure 5. Our GRUNet architecture. For a word of length n, Wn is the embedding of the nth word of the sentence. For the forward GRU
layer, we pass in only the word embedding at each timestep. Then, to the ResNet + MLP layer, we input the image and the forward GRU’s
output (this should produce our word + image encoding), We reinput the word along with the joint encoding into the backward GRU, whose
output is decoded by a simple fully connected layer.

4. Results

Following the testing of the various architectures, we
find that the best Image Encoder is one that uses ResNet
with 152 layers. It is crucial to note that ResNet50, as well
as VGG18, achieve similar accuracy, just marginally less.
We chose to use the best implementation in GRUNet as
running for only 15 epochs allowed the use of the compu-
tationally heavier neural network. VGG, known to be faster
than ResNet but less accurate performs extremely well and
is also a suitable image model for an efficient model how-
ever we chose to go with the state of the art on accuracy
which was ResNet152.

On the text encoder, we found that the best was, as the ti-
tle of this paper suggests, the GRU architecture. This model
learned faster than any of the other models, achieving close
to 0.50 accuracy on the test set just after one epoch. In two
epochs, it outperforms the baseline in [1]. The smaller net-
work on its own outperforms the 152 layer ResNet, which
justified its use in GRUNet.

While GRUNet does not achieve the state of the art, it

provides a unique architecture that is within the variance of
other state-of-the-art models. It is a method that has been
implemented before and was an interesting method of com-
bining Text and Image information. We attribute the lack of
performance to the introduction of a more complex archi-
tecture than needed for the abstract dataset. Where a bidi-
rectional RNN here may seem overkill, a possible future
work could be to apply these models to the more complex
real images dataset. With more images in ImageNet coming
from real images as opposed to abstract scenes, we believe
this my help performance.

After tuning the parameters of our model (training for
15 epochs with a batch size of 256), our models all out-
perform the original baseline architecture accuracy of 55%
but do not reach the state-of-the-art accuracy achieved by
transformers. The accuracy of all the models is shown in 8.

5. Discussion

Overall, we saw improvements over the baseline by
changing the encoders and decoders but didn’t see any im-
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Figure 6. Top: Training Loss and Training Accuracy on VQA

Figure 7. Top: Training Loss and Training Accuracy on VQA
As seen by the purple line in the plots, GRUNet does not

achieve the state of the art but is competitive with the
remaining models. The best model in the architecture is

VGG18 and GRU

provement when changing the GRUNet architecture. One
reason for this could be that we kept the decoder (just two
fully connected layers) consistent between both models.
Our idea with that was to be able to evaluate only the en-
coders and see if our joint encoder would perform better
than separate encoders. However, this may not have been
the optimal approach because RNNs are structured to pro-
duce output words/embeddings at each timestep, so perhaps
simply taking the output of the final GRU cell would have

Model Accuracy
Baseline 54.72
Baseline Finetune 64.67
ResNet18 + LSTM 62.74
ResNet50 + LSTM 65.52
ResNet152 + LSTM 65.77
VGG18 + GRU 66.42
GRUNet (Ours) 64.22

Figure 8. Model Validation Accuracy. We we do not achieve the
state of the art, we present a new method that is within variance of
successful methods.

been better instead of using the encoding produced by the
final GRU layer.

Another reason for GRUNet’s mediocre performance
could have been hyperparameters. We observed the hyper-
parameters working for the separate encoders, but the loss
of GRUNet does have multiple timesteps where it’s increas-
ing, and it ends at the highest loss while being near the top
in accuracy. It makes sense that GRUNet’s optimal hyper-
parameters would be different than the baseline and other
encoders because of its large shift in architecture. Perhaps
if we lowered the learning rate the loss decrease would be
steadier, or if we increased the batch size. We could try
a grid search over hyperparameters in the future to see if
that’s the issue.

One final issue with our architecture is that the joint en-
coding isn’t learned as directly as in transformer models.
In models like CLIP and VLMo, they specifically train for
image-text contrast and use complex combinations of them,
such as cosine similarity between the encodings, to ensure
the contrast is learned. In our model, we do no such pre-
training and only have a fully connected layer connecting
the encodings of the Forward GRU and Resnet as the input
to the backward GRU. Therefore, playing around with the
Resnet + MLP layer and possibly changing the method of
doing the joint encodings could improve the model. Ad-
ditionally, we could use self-attention before the RNN to
improve the word encodings.

If one were to create an architecture that works best,
for future works we suggest a combination of GRU with
ResNet, without a bidirectional RNN. Since GRU and
ResNet both perform the best on their own, we hypothe-
size based on the tests that this would be the simplest and
the best architecture

6. Conclusion

Overall, GRUNet is comparable to alternative models
with separated encoders and decoders. Future work could
focus on improving the Resnet + MLP layer to a more com-
plex joint representation of image + text timestep. One pos-
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sible future model would be to change that middle layer
to create a CLIP encoding of the word + image combina-
tion for each word in the sequence, and then feed that into
a backward or bidirectional RNN to possibly improve on
CLIP’s already state-of-the-ard VQA performance.

Another new model could be completely retraining
RESNET on an abstract image dataset. Since it’s currently
trained on mostly real images, using only abstract images
could improve its performance on the abstract dataset. An-
other group’s project from a couple of years ago used a gen-
erative adversarial network to generate new abstract images
for the VQA dataset, so these could be used to pre-train a
ResNet encoder for abstract VQA.

Other encoders we would like to try in the future include
Merlot [8] and DALL-E [4]. Merlot is a transformer pre-
trained on image/text contrasting in youtube videos along
with temporal ordering of the frames. It performs very
well on video question answering, so it would be cool to
see how that performance would translate to using it out of
the box on VQA, fine-tuning it, and substituting it into the
GRUNet middle layer. DALL-E can create images based
only on a text description, so that could perhaps be used to
encode the image + text based on the real image’s reason-
ability/proximity based on a set of DALL-E created images
for that text.

There are many more ways to encode and pre-trained en-
coders to explore, and we hope they will push the bound-
aries of Visual Question Answering accuracy higher.

7. Individual Contributions
7.1. Vedang Lad

In this final project, my contribution came from making
around half of the models that are used, including ResNet,
GRU, and RNN. Having a Colab Pro account from another
class, I was responsible largely for running all of the mod-
els at hand and debugging the integration of various archi-
tecture. I also constructed the various training and testing
plots seen in the report and presentation. I contributed a
significant portion of both the status update report as well
as the final report and presentations. A unique individual
responsibility I had was creating a schedule with my part-
ner to make sure that we get the project done on time.

7.2. Michael Hensgen

My largest responsibility for this project was coding up
and debugging the GRUNet model since while Vedang set
up the training on his Colab Pro I could debug the models
we were making on my basic Colab account. I would check
that all the outputs were what we expected so that the long
training processes would be correct. In the final report, I
wrote the related work and collaborated on the approach,
results, discussion, and conclusions sections of the final re-

port. I also tried some other experimental models that didn’t
work out as well (and we couldn’t get computationally time
efficient enough), such as an architecture with a BERT en-
coder.

8. Reproducible
All of the code required to replicate the

project can in be found in the public repository.
https://github.com/vdlad/basicvqa
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